不同的屏蔽層設(shè)置方式對共模傳導(dǎo)EMI的抑制

2014-11-12 10:34 來源:電子信息網(wǎng) 作者:云際

電源工程師們都知道,在開關(guān)電源中,EMI產(chǎn)生的根本原因在于存在著電流、電壓的高頻急劇變化,其通過導(dǎo)線的傳導(dǎo),以及電感、電容的耦合形成傳導(dǎo)EMI。同而電流、電壓的變化必定伴有磁場、電場的變化,由此也就導(dǎo)致了輻射EMI。所謂EMI就是電磁兼容,是電子設(shè)備或系統(tǒng)在電磁環(huán)境下能正常工作,且不對該環(huán)境中任何事物構(gòu)成不能承受的電磁騷擾的能力。所有拓?fù)湫问降拈_關(guān)電源都有電磁干擾的問題。目前克服電磁干擾的技術(shù)手段主要有:在電源的輸入、輸出端設(shè)置無源或有源濾波器,設(shè)置屏蔽外殼并接地,采用軟開關(guān)技術(shù)和變頻控制技術(shù)等。本文就將解析變壓器中共模傳導(dǎo)EMI的產(chǎn)生,以及變壓器中不同的屏蔽層設(shè)置方式對共模傳導(dǎo)EMI的抑制。

高頻變壓器中傳導(dǎo)EMI的產(chǎn)生

以反激式變換器為例,其主電路如圖1所示。開關(guān)管開通后,變壓器一次側(cè)電流逐漸增加,磁芯儲能也隨之增加。當(dāng)開關(guān)管關(guān)斷后,二次側(cè)整流二極管導(dǎo)通,變壓器儲能被耦合到二次側(cè),給負(fù)載供電。

1

圖1 反激變換器

在開關(guān)電源中,輸入整流后的電流為尖脈沖電流,開關(guān)開通和關(guān)斷時(shí)變換器中電壓、電流變化率很高,這些波形中含有豐富的高頻諧波。另外,在主開關(guān)管開關(guān)過程和整流二極管反向恢復(fù)過程中,電路的寄生電感、電容會發(fā)生高頻振蕩,以上這些都是電磁干擾的來源。開關(guān)電源中存在大量的分布電容,這些分布電容給電磁干擾的傳遞提供了通路,如圖2所示。圖2中,LISN為線性阻抗穩(wěn)定網(wǎng)絡(luò),用于線路傳導(dǎo)干擾的測量。干擾信號通過導(dǎo)線、寄生電容等傳遞到變換器的輸入、輸出端,形成了傳導(dǎo)干擾。變壓器的各繞組之間也存在著大量的寄生電容,如圖3所示。圖3中,A、B、C、D4點(diǎn)與圖1中標(biāo)識的 4點(diǎn)相對應(yīng)。

2

圖2 反激式開關(guān)電源寄生電容典型的分布


3

圖3 變壓器中寄生電容的分布

在圖1所示的反激式開關(guān)電源中,變換器工作于連續(xù)模式時(shí),開關(guān)管VT導(dǎo)通后,B點(diǎn)電位低于A點(diǎn),一次繞組匝間電容便會充電,充電電流由A流向B;VT關(guān)斷后,寄生電容反向充電,充電電流由B流向A。這樣,變壓器中便產(chǎn)生了差模傳導(dǎo)EMI。同時(shí),電源元器件與大地之間的電位差也會產(chǎn)生高頻變化。由于元器件與大地、機(jī)殼之間存在著分布電容,便產(chǎn)生了在輸入端與大地、機(jī)殼所構(gòu)成回路之間流動的共模傳導(dǎo)EMI電流。

具體到變壓器中,一次繞組與二次繞組之間的電位差也會產(chǎn)生高頻變化,通過寄生電容的耦合,從而產(chǎn)生了在一次側(cè)與二次側(cè)之間流動的共模傳導(dǎo)EMI電流。交流等效回路及簡化等效回路如圖4所示。圖4中:ZLISN為線性阻抗穩(wěn)定網(wǎng)絡(luò)的等效阻抗;CP為變壓器一次繞組與二次繞組間的寄生電容;ZG為大地不同點(diǎn)間的等效阻抗;CSG為輸出回路與地間的等效電容;Z為變壓器以外回路的等效阻抗。

4

圖4 變壓器中共模傳導(dǎo)EMI的流通回路

1 2 3 4 > 
EMI

一周熱門