PCB設計—基于高速FPGA的PCB方案

2013-10-29 14:59 來源:電子信息網(wǎng) 作者:鈴鐺

如果高速PCB設計能夠像連接原理圖節(jié)點那樣簡單,以及像在計算機顯示器上所看到的那樣優(yōu)美的話,那將是一件多么美好的事情。然而,除非設計師初入PCB設計,或者是極度的幸運,實際的PCB設計通常不像他們所從事的電路設計那樣輕松。在設計最終能夠正常工作、有人對性能作出肯定之前,PCB設計師都面臨著許多新的挑戰(zhàn)。這正是目前高速PCB設計的現(xiàn)狀--設計規(guī)則和設計指南不斷發(fā)展,如果幸運的話,它們會形成一個成功的解決方案。

絕大多數(shù)PCB是精通PCB器件的工作原理和相互影響以及構成電路板輸入和輸出的各種數(shù)據(jù)傳輸標準的原理圖設計師與可能知道一點甚至可能一點也不知道將小小的原理圖連線轉(zhuǎn)換成印刷電路銅線后將會發(fā)生什么的專業(yè)版圖設計師相互合作的成果。通常,對最終電路板的成敗負責的是原理圖設計師。但是,原理圖設計師對優(yōu)秀的版圖技術懂得越多,避免出現(xiàn)重大問題的機會就越多。

如果設計中含有高密度的FPGA,很可能會有許多挑戰(zhàn)擺放在精心設計的原理圖前面。包括數(shù)以百計的輸入和輸出口數(shù)量,超過500MHz(某些設計中可能更高) 的工作頻率,以及小至半毫米的焊球間距等,這些都將導致設計單元之間產(chǎn)生不應有的相互影響。

并發(fā)開關噪聲

第一個挑戰(zhàn)很可能就是所謂的并發(fā)開關噪聲(SSN)或并發(fā)開關輸出(SSO)。大量的高頻數(shù)據(jù)流將在數(shù)據(jù)線上產(chǎn)生振鈴和串擾之類的問題,而電源和地平面上也會出現(xiàn)影響整個電路板性能的地線反彈和電源噪聲問題。

為了解決高速數(shù)據(jù)線上的振鈴和串擾,改用差分信號是很好的第一步。由于差分對上的一條線是吸收(Sink)端,另一條提供源電流,因此能從根本上消除感應影響。利用差分對傳輸數(shù)據(jù)時,由于電流保持在局部,因此有助于減小返回路徑中的感應電流產(chǎn)生的“反彈”噪聲。對于高達數(shù)百MHz甚至數(shù)GHz的射頻,信號理論表明,在阻抗匹配時可以傳送最大信號功率。而傳輸線匹配不好時,將會產(chǎn)生反射,只有一部分信號從發(fā)端傳輸?shù)浇邮赵O備,而其他部分將在發(fā)送端和接收端之間來回反彈。在PCB上差分信號實現(xiàn)的好壞將對阻抗匹配(以及其他方面)起很大的作用。

差分走線設計

差分走線設計建立在阻抗受控的PCB原理上。其模型有點像同軸電纜。在阻抗受控的PCB上,金屬平面層可以當作屏蔽層,絕緣體是FR4層壓板,而導體則是信號走線對(見圖1)。FR4的平均介電常數(shù)在4.2到4.5之間。由于不知道制造誤差,有可能導致對銅線的過度蝕刻,最終造成阻抗誤差。計算PCB走線阻抗的最精確方法是利用場解析程序(通常是二維,有時候用三維),它需要利用有限元對整個PCB批量直接解麥克斯韋方程。該軟件可以根據(jù)走線間距、線寬、線厚以及絕緣層的高度來分析EMI效應。

0001


圖1:同軸電纜和PCB的比較。

100Ω特征阻抗已經(jīng)成為差分連接線的行業(yè)標準值。100Ω的差分線可以用兩根等長的50Ω單端線制作。由于兩根走線彼此靠近,線間的場耦合將減小線的差模阻抗。為了保持100Ω的阻抗,走線的寬度必須減小一點。結果,100Ω差分線對中每根線的共模阻抗將比50歐略為高一點。

理論上走線的尺寸和所用的材料決定了阻抗,但過孔、連接器乃至器件焊盤都將在信號路徑中引入阻抗不連續(xù)性。不用這些東西通常是不可能的。有時候,為了更合理的布局和布線,就需要增加PCB的層數(shù),或者增加像埋孔這類功能。埋孔只連接PCB的部分層,但是在解決傳輸線問題的同時,也增加了板子的制作成本。但有時候根本沒有選擇。隨著信號速度越來越快,空間越來越小,像對埋孔這類的額外需求開始增加,這些都應成為PCB解決方案的成本要素。

0002


圖2:差分線設計實例。

如圖2所示的橫截面是實際差分線版圖的最常見圖案。在采用帶狀線布線時,信號被FR-4材料夾在中間。而微帶線時,一條導體是裸露在空氣中的。因為空氣的介電常數(shù)最低(Er= 1),故頂層最適合布設一些關鍵信號,如時鐘信號或者高頻的SERial-DESerial (SERDES)信號。 微帶線布線應該耦合到下方的地平面,該地平面通過吸收部分電磁場線來減小電磁干擾(EMI)。在帶狀線中,所有的電磁場線耦合到上方和下方的參考平面,這大大降低了EMI。如果可能的話,應該盡量不要用寬邊耦合帶狀線設計。這種結構容易受到參考面中耦合的差分噪聲的影響。另外還需要PCB的均衡制造,這是很難控制的??偟膩碚f,控制位于同一層上的線間距還是比較容易的。

去耦和旁路電容器

另一個確定PCB的實際性能是否符合預期的重要方面需要通過增加去耦和旁路電容進行控制。增加去耦電容器有助于減小PCB的電源與地平面之間的電感,并有助于控制PCB上各處的信號和IC的阻抗。旁路電容有助于為FPGA提供一個干凈的電源(提供一個電荷庫)。傳統(tǒng)規(guī)則是在方便PCB布線的任何地方都應布置去耦電容,并且FPGA電源引腳的數(shù)量決定了去耦電容的數(shù)量。但是,F(xiàn)PGA的超高開關速度徹底打破了這種陳規(guī)。

在典型的FPGA板設計中,最靠近電源的電容為負載的電流變化提供頻率補償。為了提供低頻濾波并防止電源電壓下降,要使用大的去耦電容。電壓下降是由于設計電路啟動時穩(wěn)壓器的響應有所滯后。這種大電容通常是低頻響應較好的電解電容,其頻率響應范圍從直流到幾百kHz。

每個FPGA輸出變化都要求對信號線充電和放電,這需要能量。旁路電容的功能是在寬頻率范圍內(nèi)提供局部能量存儲。另外,還需要串聯(lián)電感很小的小電容來為高頻瞬變提供高速電流。而反應慢的大電容在高頻電容器能量消耗掉以后繼續(xù)提供電流。

1 2 > 
FPGA PCB

相關閱讀

暫無數(shù)據(jù)

一周熱門